## G. V. P. Chandra Mouli

Department of Chemistry, Regional Engineering College, Warangal-506004 (A. P.), India

T. Giridhar, D. Mohan Rao and R. B. Reddy\*

Research and Development Center, Cheminor Drugs Limited, Jeedimetla, Hyderabad-500054 (A. P.), India
Received January 17, 1995
Revised September 28, 1995

The synthesis of a series of derivatives of 4-hydroxycoumarin analogues of aflatoxin and a preliminary testing of their anticoagulant activity is described.

J. Heterocyclic Chem., 33, 5 (1996).

In our previous publications [1,2], we described the synthesis of various linear and angular derivatives of 4-hydroxycoumarin analogues 1, containing the basic skeleton of aflatoxin- $B_1$  [3,4]. We now report the synthesis and characterization of warfarin analogues, Mannich bases and 3-acyl derivatives of 4-hydroxy-5-methoxy-7a,9,10,10a-tetrahydro-2H-furo[3',2':4,5]-furo[2,3-h]-1-benzopyran-2,9-dione 1 [1]. As electrophilic substituents like aminomethyl, acyl and  $\alpha$ -acetonylbenzyl groups in the 3-position of a 4-hydroxycoumarin unit enhance the anticoagulant activity [5], similar types of substituents were introduced at the 3-position of compound 1, in the course of the present work.

When various amines reacted with 1 and formaldehyde in alcoholic medium a series of Mannich bases namely 3-(*N*-substituted amino)methyl-4-hydroxy-5-methoxy-7a,9,10,10a-tetrahydro-2*H*-furo[3',2':4,5]furo[2,3-*h*]-1-benzopyran-2,9-diones, 2a-2f (Chart 1), were obtained.

As the tricarbonylmethane has been found to impart remarkable anticoagulant activity [6], a series of 3-acyl-4-hydroxy-5-methoxy-7a,9,10,10a-tetrahydro-2*H*-furo-[3',2':4,5]furo[2,3-*h*]-1-benzopyran-2,9-diones **3a-f** (Chart 2) were also synthesised by the reaction of **1** with various carboxylic acids in phosphorous oxychloride.

Warfarin is a well known anticoagulant on the market [7]. When 1 is treated with  $\alpha$ ,  $\beta$ -unsaturated ketone like 1-substituted-3-oxobut-1-ene, a Michael addition takes places to produce Warfarin analogues of Aflatoxin, 4a-f (Chart 3).

Anticoagulant activity.

Some of the compounds synthesized were screened for their anticoagulant activity upon albino (*Mus rattus*) rats at the dose level of 5 mg by adopting the method of Quick and coworkers (8,9). The average increase in prothrombin time of plasma (12.5 %) over normal was noted. From this data the relative anticoagulant index was calculated.

Table 1

This index serves as an approximate basis for the comparison of the activity (Table 1).

| Compound | Increase in prothrombin time over normal (sec) | Relative<br>anticoagulant index | ison of the activity (Table 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a       | 14.72                                          | 7.418                           | EXPERIMENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2b       | 9.3                                            | 4.687                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2c       | Nil                                            | Nil                             | M. Maria and Mar |
| 2d       | 8.58                                           | 4.324                           | Melting points are uncorrected. The ir spectra were obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2e       | Nil                                            | Nil                             | in potassium bromide pellets with a Perkin-Elmer 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2f       | Nil                                            | Nil                             | Spectrometer. The <sup>1</sup> H nmr spectra were run on a Varian A-90, at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3a       | 7.62                                           | 3.84                            | 90 MHz in DMSO-d <sub>6</sub> or deuteriochloroform using TMS as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3b       | 10.97                                          | 5.528                           | internal standard, Mass spectra were obtained on JMS-D 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3c       | Nil                                            | Nil                             | Mass Spectrograph at 70 ev. Elemental analyses were performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3d       | 32.29                                          | 16.27                           | on KARLO-ERBA CHNS-O analyser (Table 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3e       | Nil                                            | Nil                             | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3f       | Nil                                            | Nil                             | 3-(N-Substituted amino)methyl-4-hydroxy-5-methoxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4a       | 64.25                                          | 32.382                          | 7a,9,10,10a-tetrahydro-2 <i>H</i> -furo[3',2':4,5]furo[2,3- <i>h</i> ]-1-benzopy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4b       | 58.24                                          | 29.352                          | ran-2,9-diones, 2a-f.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4c       | 41.82                                          | 21.077                          | General Procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4d       | 36.5                                           | 19.396                          | General i rocciule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4e       | 28.21                                          | 14.217                          | A suspension of 1 (0.29 g, 1 mmole) in 6 ml of ethanol,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4f       | 24.33                                          | 12.262                          | N-substituted amine (1.2 mmoles) in 5 ml of ethanol and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 7 | • | 1 1 |   | ~    |
|---|---|-----|---|------|
| 1 | а | nı  | e | - /. |

| Compound<br>No. | Yield<br>(%) | Mp<br>(°C) | Molecular<br>Formula                               | Elemental Analyses (%)<br>Calcd./Found |              |              |     | <sup>1</sup> H NMR<br>(δ ppm)                                                                                                                                                                                                                                                                                                 |
|-----------------|--------------|------------|----------------------------------------------------|----------------------------------------|--------------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |              |            |                                                    | C                                      | H            | N            |     |                                                                                                                                                                                                                                                                                                                               |
| 2a              | 49           | >300       | C <sub>17</sub> H <sub>17</sub> O <sub>7</sub> N   | 58.78<br>58.63                         | 4.89<br>4.92 | 4.03<br>4.09 | 347 | 3.12 (d, 2H, 10-CH <sub>2</sub> ), 3.26 (s, 2H, 3-CH <sub>2</sub> ),<br>3.58 (s, 3H, 5-OCH <sub>3</sub> ), 3.75 (m, 1H, 10a-H),<br>3.93 (s, 6H, N(CH <sub>3</sub> ) <sub>2</sub> ), 6.16 (d, 1H, 6-H),<br>12.12 (bs, 1H, 4-OH)                                                                                                |
| 2Ь              | 53           | 289-290    | C <sub>18</sub> H <sub>19</sub> O <sub>7</sub> N   | 59.83<br>59.79                         | 5.26<br>5.31 | 3.87<br>3.81 | 361 | 1.90 (t, 3H, -CH <sub>2</sub> CH <sub>3</sub> ), 2.98 (d, 2H, 10-CH <sub>2</sub> ), 3.12 (s, 3H, -NCH <sub>3</sub> ), 3.28 (q, 2H, -CH <sub>2</sub> CH <sub>3</sub> ), 3.34 (s, 3H, 5-OCH <sub>3</sub> ), 3.65 (s, 3H, 5-OCH <sub>3</sub> ), 3.89 (m, 1H, 10a-H), 6.15 (d, 1H, 7a-H), 6.78 (s, 1H, 6-H), 12.31 (bs, 1H, 4-OH) |
| <b>2</b> c      | 23           | 243-244    | $C_{21}H_{17}O_7N$                                 | 63.79<br>63.81                         | 4.30<br>4.27 | 3.54<br>3.56 | 395 | 2.91 (d, 2H, 10-CH <sub>2</sub> ), 3.31 (s, 2H, 3-CH <sub>2</sub> ), 3.70 (m, 1H, 10a-H), 3.92 (s, 3H, 5-OCH <sub>3</sub> ), 5.78 (b, 1H, -NH), 6.53 (s, 1H, 6-H), 7.2-7.8 (m, 5H, Ph), 12.1 (bs, 1H, 4-OH)                                                                                                                   |
| 2d              | 34           | 254        | C <sub>22</sub> H <sub>19</sub> O <sub>7</sub> N   | 64.54<br>64.53                         | 4.64<br>4.61 | 3.42<br>3.48 | 409 | 2.71 (s, 3H, -CH <sub>3</sub> ), 3.02 (d, 2H, 10-CH <sub>2</sub> ),<br>3.28 (s, 2H, 3-CH <sub>2</sub> ), 3.65 (s, 3H, 5-OCH <sub>3</sub> ),<br>4.21 (m, 1H, 10a-H), 5.64 (bs, 1H, -NH),<br>5.92 (d, 1H, 7a-H), 6.73 (s, 1H, 6-H),<br>7.14 (d, 2H, Ar), 7.75 (d, 2H, Ar),<br>12.32 (bs, 1H, 4-OH)                              |
| 2e              | 27           | >300       | C <sub>21</sub> H <sub>16</sub> O <sub>7</sub> NCI | 58.67<br>58.65                         | 3.72<br>3.79 | 3.25<br>3.21 | 429 | 2.86 (s, 2H, 3-CH <sub>2</sub> ), 3.28 (d, 2H, 10-CH <sub>2</sub> ),<br>3.60 (s, 3H, 5-OCH <sub>3</sub> ), 4.27 (m, 1H, 10a-H),<br>5.82 (bs, 1H, -NH), 6.35 (d, 1H, 7a-H),<br>6.64 (s, 1H, -6H), 7.34 (d, 2H, -Ar),<br>7.90 (d, 2H, -Ar), 11.93 (bs, 1H, 4-OH)                                                                |
| 2f              | 37           | 264-265    | $C_{20}H_{16}O_7N_2$                               | 60.60<br>60.63                         | 4.04<br>4.01 | 7.07<br>7.12 | 396 | 3.25 (d, 2H, 10-CH <sub>2</sub> ), 3.80 (d, 2H, 3-CH <sub>2</sub> ),<br>4.33 (m, 1H, 10a-H), 5.48 (s, 3H, 5-OCH <sub>3</sub> ),<br>5.92 (bs, 1H, -NH), 6.12 (d, 1H, 7a-H),<br>6.71 (s, 1H, 6-H), 7.21 (dd, 1H, py-5-H),<br>7.86 (dd, 1H, py-4-H), 8.48 (d, 1H, py-3-H),<br>8.61 (d, 1H, py-6-H), 12.14 (bs, 1H, 4-OH)         |
| 3a              | 43           | 251-252    | $C_{16}H_{12}O_8$                                  | 57.83<br>57.85                         | 3.61<br>3.63 |              | 332 | 2.30 (s, 3H, -CH <sub>3</sub> ), 3.28 (d, 2H, -CH <sub>2</sub> ),<br>4.28 (m, 1H, 10a-H), 5.38 (s, 3H, 5-OCH <sub>3</sub> ),<br>5.96 (d, 1H, 7a-H), 6.24 (s, 1H, 6-H),<br>12.16 (bs, 1H, 4-OH)                                                                                                                                |
| 3b              | 39           | 289-290    | $C_{17}H_{14}O_8$                                  | 58.95<br>58.91                         | 4.04<br>4.11 |              | 346 | 1.91 (t, 3H, -CH <sub>2</sub> CH <sub>3</sub> ), 3.37 (d, 2H, 10-CH <sub>2</sub> ), 3.56 (s, 3H, 5-OCH <sub>3</sub> ), 3.71 (q, 2H, -CH <sub>2</sub> CH <sub>3</sub> ), 3.98 (m, 1H, 10a-H), 6.14 (d, 1H, 7a-H), 6.37 (s, 1H, 6-H), 12.31 (bs, 1H, 4-OH)                                                                      |

Table 2 (continued)

| Table 2 (continues) |              |            |                                                   |                         |                           |              |            |                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|--------------|------------|---------------------------------------------------|-------------------------|---------------------------|--------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound<br>No.     | Yield<br>(%) | Mp<br>(°C) | Molecular<br>Formula                              |                         | al Analy<br>lcd./Fou<br>H |              | MS<br>(M+) | <sup>1</sup> H NMR<br>(δ ppm)                                                                                                                                                                                                                                                                                                                       |
| <b>3</b> c          | 28           | >300       | $C_{21}H_{14}O_{8}$                               | 63.95<br>63.98          | 3.55<br>3.50              |              | 394        | 3.19 (d, 2H, 10-CH <sub>2</sub> ), 3.68 (s, 3H, 5-OCH <sub>3</sub> ),<br>4.16 (m, 1H, 10a-H), 5.95 (d, 1H, 7a-H),<br>6.13 (s, 1H, 6-H), 7.3-8.1 (m, 5H, Ph),                                                                                                                                                                                        |
| 3d                  | 19           | 278-279    | $C_{22}H_{16}O_{8}$                               | 64.70<br>64.75          | 3.92<br>3.87              | _            | 408        | 11.87 (bs, 1H, 4-OH) 2.33 (s, 3H, -CH <sub>3</sub> ), 2.98 (d, 2H, 10-CH <sub>2</sub> ), 3.52 (s, 3H, 5-OCH <sub>3</sub> ), 4.89 (m, 1H, 10a-H), 5.67 (d, 1H, 7a-H), 6.14 (s, 1H, 6-H), 7.24 (d, 2H, Ar), 7.72 (d, 2H, Ar), 12.21 (bs, 1H, 4-OH)                                                                                                    |
| 3e                  | 41           | 293        | C <sub>21</sub> H <sub>13</sub> O <sub>8</sub> Cl | 58.80<br>58.73          | 3.03<br>3.11              | _            | 428        | 2.94 (d, 2H, 10-CH <sub>2</sub> ), 3.50 (s, 3H, 5-OCH <sub>3</sub> ),<br>4.14 (m, 1H, 10a-H), 5.83 (d, 1H, 7a-H),<br>6.28 (s, 1H, 6-H), 7.14 (d, 2H, -Ar),<br>7.54 (d, 2H, -Ar), 12.34 (bs, 1H, 4-OH)                                                                                                                                               |
| 3f                  | 35           | >300       | C <sub>20</sub> H <sub>13</sub> O <sub>8</sub> N  | 60.76<br>60.70          | 3.29<br>3.22              | 3.54<br>3.50 | 395        | 3.12 (d, 2H, 10-CH <sub>2</sub> ), 3.48 (s, 3H, 5-OCH <sub>3</sub> ),<br>4.05 (m, 1H, 10-aH), 5.81 (d, 1H, 7-aH),<br>6.22 (s, 1H, 6-H), 7.41 (t, 1H, py-5-H),<br>8.20 (d, 1H, ph-4-H), 8.42 (s, 1H, py-2-H),<br>8.63 (d, 1H, py-6-H), 12.41 (bs, 1H, 4-OH)                                                                                          |
| <b>4a</b>           | 32           | >300       | $C_{19}H_{18}O_8$                                 | 60.96<br>60.99          | 4.81<br>4.72              |              | 374        | 1.96 (d, 3H, -CH <sub>3</sub> ), 2.85 (d, 2H, 10-CH <sub>2</sub> ),<br>3.21 (s, 3H, -COCH <sub>3</sub> ), 3.42 (d, 2H, -CH <sub>2</sub> CO-),<br>3.73 (s, 3H, 5-OCH <sub>3</sub> ), 3.95 (m, 1H, 10a-H),<br>4.13 (m, 1H,-CH-), 6.18 (d, 1H, 7a-H),<br>6.52 (s, 1H, 6-H), 11.87 (bs, 1H, 4-OH)                                                       |
| 4b                  | 47           | >300       | $\mathrm{C}_{20}\mathrm{H}_{20}\mathrm{O}_{8}$    | 61.85<br>61.93<br>66.05 | 5.15<br>5.09<br>4.58      |              | 388        | 1.82 (t, 3H, -CH <sub>2</sub> CH <sub>3</sub> ), 2.98 (d, 2H, 10-CH <sub>2</sub> ), 3.19 (d, 2H, -CH <sub>2</sub> CO-), 3.31 (s, 3H, -COCH <sub>3</sub> ), 3.43 (m, 2H, -CH <sub>2</sub> CH <sub>3</sub> ), 3.72 (s, 3H, 5-OCH <sub>3</sub> ), 4.06 (m, 1H, 10a-H), 4.24 (m, 1H, -CH-), 5.95 (d, 1H, 7a-H), 6.29 (s, 1H, 6-H), 12.32 (bs, 1H, 4-OH) |
| <b>4</b> c          | 52           | 264-265    | $C_{24}H_{20}O_{8}$                               | 66.05<br>66.11          | 4.58<br>4.47              |              | 436        | 2.92 (d, 2H, 10-CH <sub>2</sub> ), 3.15 (s, 3H, -COCH <sub>3</sub> ),<br>3.37 (d, 2H, -CH <sub>2</sub> CO-), 3.76 (s, 3H, 5-OCH <sub>3</sub> ),<br>4.09 (m, 1H, 10a-H), 4.21 (t, 1H,-CH-),<br>5.89 (d, 1H, 7a-H), 6.14 (s, 1H, 6-H),<br>7.4-8.2 (m, 5H, Ph), 12.18 (bs, 1H, 4-OH)                                                                   |
| 4d                  | 31           | 291-292    | $\mathrm{C}_{25}\mathrm{H}_{22}\mathrm{O}_{8}$    | 66.66<br>66.69          | 4.88<br>4.98              | _            | 450        | 2.49 (s, 3H, -CH <sub>3</sub> ), 2.87 (d, 2H, 10-CH <sub>2</sub> ), 3.21 (s, 3H, -COCH <sub>3</sub> ), 3.40 (d, 2H, -CH <sub>2</sub> CO-), 3.78 (s, 3H, -COCH <sub>3</sub> ), 4.07 (m, 1H, 10a-H), 4.30 (t, 1H, -CH-), 5.80 (d, 1H, 7a-H), 6.59 (s, 1H, 6-H), 7.35 (d, 2H, -Ar), 7.80 (d, 2H, -Ar), 11.93 (bs, 1H, 4-OH)                            |
| <b>4e</b>           | 41           | 274-275    | C <sub>24</sub> H <sub>19</sub> O <sub>8</sub> Cl | 61.21<br>61.17          | 4.03<br>3.97              |              | 470        | 2.87 (d, 2H, 10-CH <sub>2</sub> ), 3.18 (s, 3H, -COCH <sub>3</sub> ), 3.34 (d, 2H, -CH <sub>2</sub> cO-), 3.58 (s, 3H, 5-OCH <sub>3</sub> ), 3.98 (t, 1H, -CH-), 4.23 (m, 1H, 10a-H), 5.82 (d, 1H, 7a-H), 6.73 (s, 1H, 6-H), 7.24 (d, 2H, -Ar), 7.56 (d, 2H, -Ar), 12.13 (bs, 1H, 4-OH)                                                             |
| 4f                  | 39           | >300       | C <sub>23</sub> H <sub>19</sub> O <sub>8</sub> N  | 63.15<br>63.10          | 4.34<br>4.41              | 3.20<br>3.13 | 437        | 3.15 (d, 2H, 10-CH <sub>2</sub> ), 3.25 (s, 3H, -COCH <sub>3</sub> ), 3.42 (d, 2H, -CH <sub>2</sub> CO-), 3.56 (s, 3H, 5-OCH <sub>3</sub> ), 4.08 (t, 1H, -CH-), 4.23 (m, 1H,10a-H), 5.92 (d, 1H, py-3-H), 6.71 (s, 1H, 6-H), 7.52 (t, 1H, py-5-H), 8.11 (d, 1H, py-4-H), 8.32 (s, 1H, py-2-H), 8.55 (d, 1H, py-6-H), 11.83 (bs, 1H, 4-OH)          |

formaldehyde (1.8 ml, 40%) was stirred at room temperature for 2 hours. It was allowed to stand for 4-5 hours at 5°. The precipitates were collected by suction filtration, washed with ethanol and dried in a vacuum desiccator. The crude products were crystallized from aqueous ethanol (Table 2).

3-Acyl-4-hydroxy-5-methoxy-7a, 9, 10, 10a-tetrahydro-2H- furo-[3',2':4,5] furo [2,3-h]-1-benzopyran-2,9-diones, 3a-f.

## General Procedure.

A mixture of 1 (2.9 g, 1 mmole), carboxylic acid (1.5 mmoles) and phosphorous oxychloride (0.6 ml) was refluxed for 1 hour. The crystalline compound was washed with cold ethanol repeatedly, dried in a vacuum desiccator, and recrystallized from dioxan-water (Table 2).

3-(1-Substituted-3-oxobut-1-enyl) 4-hydroxy-5-methoxy-

7a,9,10,10a-tetrahydro-2*H*-furo[3',2':4,5]furo[2,3-*h*]-1-benzopyran-2,9-diones, **4a-f**.

## General Procedure.

A solution of substituted benzalacetone (substituted-3-oxobut-1-ene) (1.4 mmoles) 1 (2.9 g, 1 mmole) in 30 ml of dioxan containing a few drops of piperidine was refluxed for 4-5 hours. Later it was cooled and poured into ice water with vigorous stirring. The crude solid separated was recrystallized from acetone-water (Table 2).

## REFERENCES AND NOTES

[1] G. V. P. Chandra Mouli, Y. D. Reddy and V. V. S. Somayajulu, *Tetrahedron*, 39, 2277 (1983).

- [2] G. V. P. Chandra Mouli, R. B. Reddy and Y. D. Reddy, J. Indian Chem. Soc., 67, 917 (1990).
  - [3] G. Buchi and E. C. Roberts, J. Org. Chem., 33, 460 (1968).
- [4] R. S. Iyer, M. W. Vochler and T. M. Harris, J. Am. Chem. Soc., 116, 8863 (1994).
- [5] Z. M. Gumminska and M. Eckstein, J. Med. Pharm. Chem., 3, 583 (1961).
- [6] C. Ukita, T. Tamura, R. Matsuda and E. Kashiwabara, *Japan J. Expt. Med.*, 20, 109 (1949).
- [7] K. P. Link and K. B. R. Robertson, J. Am. Chem. Soc., 72, 5193 (1950).
  - [8] A. J. Quick, Am. J. Physiol., 118, 260 (1937).
- [9] A. J. Quick, S. Brown and L. Bancroft, Am. J. Med. Sci., 190, 501 (1935).